3,206 research outputs found

    Electron - positron cascades in multiple-laser optical traps

    Get PDF
    We present an analytical and numerical study of multiple-laser QED cascades induced with linearly polarised laser pulses. We analyse different polarisation orientations and propose a configuration that maximises the cascade multiplicity and favours the laser absorption. We generalise the analytical estimate for the cascade growth rate previously calculated in the field of two colliding linearly polarised laser pulses and account for multiple laser interaction. The estimate is verified by a comprehensive numerical study of four-laser QED cascades across a range of different laser intensities with QED PIC module of OSIRIS. We show that by using four linearly polarised 30 fs laser pulses, one can convert more than 50 % of the total energy to gamma-rays already at laser intensity I≃1024 W/cm2I\simeq10^{24}\ \mathrm{W/cm^2}. In this configuration, the laser conversion efficiency is higher compared with the case with two colliding lasers

    Shock formation in electron-ion plasmas: mechanism and timing

    Get PDF
    We analyse the full shock formation process in electron-ion plasmas in theory and simulations. It is accepted that electromagnetic shocks in initially unmagnetised relativistic plasmas are triggered by the filamentation instability. However, the transition from the first unstable phase to the quasi-steady shock is still missing. We derive a theoretical model for the shock formation time, taking into account the filament merging in the non-linear phase of the filamentation instability. This process is much slower than in electron-positron pair shocks, so that the shock formation is longer by a factor proportional to sqrt(m_i/m_e) ln(m_i/m_e)

    Classical Radiation Reaction in Particle-In-Cell Simulations

    Get PDF
    Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to include radiation reaction in PIC codes. We have compared several models for the calculation of the radiation reaction force, with the goal of implementing an algorithm for classical radiation reaction in the Osiris framework, a state-of-the-art PIC code. The results of the different models are compared with standard analytical results, and the relevance/advantages of each model are discussed. Numerical issues relevant to PIC codes such as resolution requirements, application of radiation reaction to macro particles and computational cost are also addressed. The Landau and Lifshitz reduced model is chosen for implementation.Comment: 12 pages, 8 figure

    Full-scale ab initio 3D PIC simulations of an all-optical radiation reaction configuration at 1021W/cm210^{21}\mathrm{W/cm^2}

    Get PDF
    Using full-scale 3D particle-in-cell simulations we show that the radiation reaction dominated regime can be reached in an all optical configuration through the collision of a ∼\sim1 GeV laser wakefield accelerated (LWFA) electron bunch with a counter propagating laser pulse. In this configuration radiation reaction significantly reduces the energy of the particle bunch, thus providing clear experimental signatures for the process with currently available lasers. We also show that the transition between classical and quantum radiation reaction could be investigated in the same configuration with laser intensities of 1024W/cm210^{24}\mathrm{W/cm^2}

    Particle Merging Algorithm for PIC Codes

    Get PDF
    Particle-in-cell merging algorithms aim to resample dynamically the six-dimensional phase space occupied by particles without distorting substantially the physical description of the system. Whereas various approaches have been proposed in previous works, none of them seemed to be able to conserve fully charge, momentum, energy and their associated distributions. We describe here an alternative algorithm based on the coalescence of N massive or massless particles, considered to be close enough in phase space, into two new macro-particles. The local conservation of charge, momentum and energy are ensured by the resolution of a system of scalar equations. Various simulation comparisons have been carried out with and without the merging algorithm, from classical plasma physics problems to extreme scenarios where quantum electrodynamics is taken into account, showing in addition to the conservation of local quantities, the good reproducibility of the particle distributions. In case where the number of particles ought to increase exponentially in the simulation box, the dynamical merging permits a considerable speedup, and significant memory savings that otherwise would make the simulations impossible to perform

    Long-time evolution of magnetic fields in relativistic GRB shocks

    Full text link
    We investigate the long-time evolution of magnetic fields generated by the two-stream instability at ultra- and sub-relativistic astrophysical collisionless shocks. Based on 3D PIC simulation results, we introduce a 2D toy model of interacting current filaments. Within the framework of this model, we demonstrate that the field correlation scale in the region far downstream the shock grows nearly as the light crossing time, lambda(t) ~ ct, thus making the diffusive field dissipation inefficient. The obtained theoretical scaling is tested using numerical PIC simulations. This result extends our understanding of the structure of collisionless shocks in gamma-ray bursts and other astrophysical objects.Comment: 5 pages. 2 figures. Submitted to ApJ
    • …
    corecore